

MEDNARODNA PODIPLOMSKA ŠOLA JOŽEFA STEFANA

INFORMATION AND COMMUNICATION TECHNOLOGIES Master study programme

Data and Text Mining

Petra Kralj Novak October 23, 2019

http://kt.ijs.si/petra_kralj/dmkd.html

Data and Text Mining

Course scope:

- Data preprocessing	Prof. dr. Bojan Cestnik
- Data mining	Prof. dr. Nada Lavrač
	Doc. dr. Petra Kralj Novak
- Text Mining	Prof. dr. Dunja Mladenić

Book: Max Bramer: Principles of data mining (2007)

- Skip Chapter 5
- Additional material on selected topics

- Theory and exercises
- Hands-on orange
 - Open source machine learning and data visualization
 - Interactive data analysis workflows with a large toolbox
 - Visual programming
- Machine learning in Python with scikit-learn
 - The gold standard of Python machine learning
 - Simple and efficient tools for data mining and data analysis
 - Well documented

#	
<pre>print("Train and test classification models")</pre>	
classifiers = [
# ("Naive Bayes", naive_bayes.MultinomialNB()),	
("Logistic regression", linear_model.LogisticRegression(C=1e5, solver='lbfgs', multi_class='multinomial', max_it	er=600)),
("MultinomialNB", MultinomialNB()),	
("SVC", svm.LinearSVC()),	
("SVC-RBF", svm.SVC(gamma='scale', decision_function_shape='ovo'))]	
<u>for name, classifier in classifiers:</u>	
classifier.fit(train_data, y_train)	
<pre>predictions = classifier.predict(test_data)</pre>	
classifier.confusion_matrix = metrics.confusion_matrix(predictions, y_test, labels=["negative", "neutral", "posi	ive"])
<pre>classifier.accuracy = metrics.accuracy_score(predictions, y_test)</pre>	
print(name, classifier.accuracy, "\n Confusion matrix: \n", classifier.confusion_matrix)	3
<pre>pickle_clf(classifier, path="./models/"+name+".pkl")</pre>	

KDD vs. ML/DM

• Knowledge Discovery from Databases vs. Machine Learning/Data Mining

Keywords Data Trans-Interpretation/ Pre-Mining Selection formation processing Evaluation **Knowledge** Transformed Patterns Preprocessed Target Data Data Data Data

- Data
 - Attribute, example, attribute-value data, target variable, class, discretization, market basket data
- Algorithms
 - Decision tree induction, entropy, information gain, overfitting, Occam's razor, model pruning, naïve Bayes classifier, KNN, association rules, support, confidence, classification rules, Laplace estimate, numeric prediction, regression tree, model tree, hierarchical clustering, dendrogram, k-means clustering, centroid, Apriori, heuristics vs. exhaustive search, predictive vs. descriptive DM, language bias, artificial neural networks, deep learning, backpropagation,...
- Evaluation
 - Train set, test set, accuracy, confusion matrix, cross validation, true positives, false positives, ROC space, AUC, error, precision, recall, F1, MSE, RMSE, rRMSE, support, confidence

Data mining techniques

ANN

Data for Data Mining

Example: the "adult" dataset

Types of attributes

- Categorical
 - Nominal (Colors: red, blue, green)
 - Binary (Gender: male, female)
 - Ordinal (Size: small, medium, large)
- Numerical
 - Integer (Number of car sits: 2, 5, ...)
 - Real (Temperature in degrees: 21°C, 23.4°C,...)
 - Ordinal
 - Binary

Mining complex data types

• Time series analysis

• Financial time series, heart-rate monitoring,...

• Text mining

• News, comments, Wikipedia, books, ... for content, sentiment, style, word meaning...

Graph mining

• Maps, molecules, citation networks, hyperlinks, for classification, patterns,...

• Social media mining (graphs + text)

• Facebook, Twitter, Information spreading, hate speech...

Images

• Image classification

Lab exercise 1

Data for data mining in Orange

Exercise1: Use Orange to fill in the following table

	Number of examples	Number of attributes	Number of numeric attributes	Number of categorical attributes	Target variable	Number of ordinal attributes
Zoo						
Iris						
Auto-mpg						
Wine						
Titanic						

Exercise 2: Use a text editor to view (and understand) the .tab data format.

Exercise 3: Create two interesting data visualizations with Orange.

Interactive visualization in Orange

- The widgets File, Data Table and Scatter Plot are connected to form a visual program.
- The selected examples in the Data Table widget are displayed as full circles in the Scatterplot.
- Note: Scatter Plot has two inputs: Data and Data subset and they need to be connected correctly.

Interactive visualization in Orange

- The same widgets composed into a different visual program.
- The selected examples in Scatter Plot are shown in Data Table.

nstances (no missing values) Teatures (no missing values) screte class with 3 values (no ssing values)		lris-versicolor	G1	Group	sepal length	sepal width	petal length	petal wie
screte class with 3 values (no					5.7	2.8	4.5	
		Iris-versicolor	G1		5.6	2.9	3.6	
		Iris-versicolor	G1		5.6	3.0	4.5	
neta attribute (no missing values)		Iris-versicolor	G1		5.6	3.0	4.1	
		Iris-versicolor	G1		5.7	3.0	4.2	
ariables	6	Iris-versicolor	G1		5.7	2.9	4.2	
Show variable labels (if present)	7	Iris-versicolor	G1		5.7	2.8	4.1	
Visualize numeric values	8	Iris-virginica	G1		5.8	2.8	5.1	
Color by instance classes	9	Iris-virginica	G1		5.6	2.8	4.9	
election Select full rows								

Classification

Classification problem

- Goal: Assign each example a category
- Examples
 - Magazine reader (or not)
 - Patients at risk for acquiring a certain illness
 - A patient needing antibiotics (or not)
 - Customers who are likely buyers
 - People who are likely to vote for a political party
 - Churn prediction
 - ...

Classification problem

- Goal: Identifying to which one of a number of mutually exhaustive and exclusive categories (known as classes) an object belongs to.
 - Given a dataset of examples (described by attributes).
 - The target variable is a attribute that we are interested in predicting. In classification, the target is categorical.
 - The values of the target variable are called classes.
 - We train a model on the data that will predict the classes of new examples as accurately as possible.

Attribute-		•••	ata		attributes			iominal) target variable	
for classifi	icatior	١	Person	0.77	Dressription		Teer Dete	♦	
		•		J	Prescription	Astigmatic			
	Examples	₹.	P1	young	myope	no	normal	YES	> classes
			P2	young	myope	no	reduced	NO	æ.
	or	\sum	P3	young	hypermetrope	no	normal	YES	- =
			P4	young	hypermetrope	no	reduced	NO	ō
	instances		P5	young	myope	yes	normal	YES	values of
			P6	young	myope	yes	reduced	NO	the
			P7	young	hypermetrope	yes	normal	YES	
			P8	young	hypermetrope	yes	reduced	NO	. (nominal)
		•	P9	pre-presbyopic	myope	no	normal	YES	target
			P10	pre-presbyopic	myope	no	reduced	NO	• • • • • • • • • • • • • • • • • • •
			P11	pre-presbyopic	hypermetrope	no	normal	YES	variable
			P12	pre-presbyopic	hypermetrope	no	reduced	NO	a.
			P13	pre-presbyopic	myope	yes	normal	YES	
			P14	pre-presbyopic	myope	yes	reduced	NO	
			P15	pre-presbyopic	hypermetrope	yes	normal	NO	
			P16	pre-presbyopic	hypermetrope	yes	reduced	NO	_
			P17	presbyopic	myope	no	normal	NO	
			P18	presbyopic	myope	no	reduced	NO	
			P19	presbyopic	hypermetrope	no	normal	YES	
			P20	presbyopic	hypermetrope	no	reduced	NO	
			P21	presbyopic	myope	yes	normal	YES	
			P22	presbyopic	myope	yes	reduced	NO	
			P23	presbyopic	hypermetrope	yes	normal	NO	4.0
		•	P24	presbyopic	hypermetrope	yes	reduced	NO	- 18

The basic classification schema

- A classifier is a function that maps from the attributes to the classes
 - Classifier(attributes) = Classes
 - f(X) = Y
- In training, the attributes and the classes are known (training examples) and we are learning a mapping function f (the clasifier)
 ?(X) = Y
- When predicting, the attributes and the classifier are known and we are assigning the classes
 - f(X) = ?
- What about evaluation?

The basic classification schema

- A classifier is a function that maps from the attributes to the classes
 - Classifier(attributes) = Classes
 - f(X) = Y
- In training, the attributes and the classes are known (training examples) and we are learning a mapping function f (the clasifier)
 ?(X) = Y
- When predicting, the attributes and the classifier are known and we are assigning the classes
 - f(X) = ?
- When evaluating, f, X and Y are known. We compute the predictions $Y_p = f(X)$ and evaluate the difference between Y and Y_p .

Basic classification schema in Orange

- We train the model on the train set
- We predict the target for the new instances
- There are several classification algorithms:
 - Decision trees
 - Naive Bayes classifier
 - K nearest neighbors (KNN)
 - Artificial neural networks (ANN)
 -

Classification with evaluation

- We train the model on the train set
- We evaluate on the test set
- We classify the new instances

Example: "titanic" dataset

Target variable Attributes survived status age sex 1281 third child no male third 1282 child male no 1283 third child male no 1284 third child no male 1285 no third child male 1286 third child yes female 1287 third child female yes 1288 third child female yes 1289 third child female yes 1290 third child female yes third 1291 child yes female third child 1292 yes female 1293 yes third child female 1294 yes third child female third 1295 yes child female third 1296 child female yes third 1297 child female yes third 1298 child yes female 1299 third child female yes 1300 third child female no

Examples

Classification: distribution of the target variable

Who survived on the Titanic?

Decision tree

- Read top-down
- Each node is an attribute which branches according to its values
- The set of examples splits according to attribute values
- Each example end up in exactly one leaf

Exercise: Classify the data instances

	status	age	sex	survived?
1	third	child	male	
2	third	child	female	
3	crew	adult	male	
4	first	adult	male	
5	second	adult	male	
6	third	adult	male	
7	first	adult	female	
8	second	adult	female	
9	third	adult	female	
10	third	child	male	

We can rewrite the tree as a set of rules

• One rule for each leaf

We can rewrite the tree as a set of rules

- sex = female & status = crew \rightarrow survived = yes
- sex = female & status = first \rightarrow survived = yes
- sex = female & status = second \rightarrow survived = yes
- sex = female & status = third & age = adult \rightarrow survived = no
- sex = female & status = third & age = child \rightarrow survived = no
- sex = male & status = crew \rightarrow survived = no
- sex = male & status = first \rightarrow survived = no
- sex = male & status = second \rightarrow survived = no
- sex = male & status = third & age = adult \rightarrow survived = no
- sex = male & status = third & age = child \rightarrow survived = no

- Rule: a path from root leaf
- Each example *fires* exactly one rule

We can interpret decision trees

- Which is the most informative attribute?
- Visualization in orange:
 - The number of examples in each node
 - Percentage of examples belonging to the majority class
 - Colour intensity = certainty of the prediction
 - Thickness of the branch proportional to the number of examples

TDIDT Top Down Induction of Decision Trees

TDIDT – Top Down Induction of Decision Trees

- We induce decision trees top-down
- There is many possible decision trees for a given dataset
- It is very important which attribute we choose as the root
- Heuristic: we choose the attribute which **best separates** the classes

• Entropy (information theory) is a measure of uncertainty.

$$E(S) = -\sum_{c=1}^{N} p_c \cdot \log_2 p_c$$

- Calculate:
 - E (0, 1) =E (1/2, 1/2) =E (1/4, 3/4) =E (1/7, 6/7) =E (6/7, 1/7) =E (0.1, 0.9) =E (0.001, 0.999) =

$$E(S) = -\sum_{c=1}^{N} p_c \cdot \log_2 p_c$$

• Calculate:

E
$$(0, 1) = 0$$

E $(1/2, 1/2) = 1$
E $(1/4, 3/4) = 0.81$
E $(1/7, 6/7) = 0.59$
E $(6/7, 1/7) = 0.59$
E $(0.1, 0.9) = 0.47$
E $(0.001, 0.999) = 0.01$

$$E(S) = -\sum_{c=1}^{N} p_c \cdot \log_2 p_c$$

• Calculate:

E
$$(0, 1) = 0$$

E $(1/2, 1/2) = 1$
E $(1/4, 3/4) = 0.81$
E $(1/7, 6/7) = 0.59$
E $(6/7, 1/7) = 0.59$
E $(0.1, 0.9) = 0.47$
E $(0.001, 0.999) = 0.01$

Example: entropy of a dataset

Titanic survivers

- All passengers: 2201
- Survivers: 721

$$E(S) = -\sum_{c=1}^{N} p_c \cdot \log_2 p_c$$

- The entire dataset 2201 instances
- 1490 classifierd NO
- 721 classified YES

We compute the entropy

	NO	YES	total
	1490	721	2211
class probability	0.674	0.326	
pi * log (pi, 2)	-0.384	-0.527	
entropy	-0.911		

Information gain (of an attribute)

Information gain (IG) measures how much "information" a feature gives us about the class.

= How much the entropy is reduced by splitting the data according to the attribute

Information Gain

- 1. Compute the entropy of the entire set
- 2. The attribute "sex" splits the dataset into two subsets :
 - female with 470 instances (344 survived)
 - male with 1731 instances (1364 died)
- 3. Compute the entropy of each subset
- 4. Compute the Information gain

$$Gain(S,A) = \underbrace{E(S)}_{v \in Values(A)} \frac{|S_v|}{|S|} \cdot E(S_v)$$

- 1. Compute the entropy of the entire set
- 2. The attribute "sex" splits the dataset into two subsets :
 - female with 470 instances (344 survived)
 - male with 1731 instances (1364 died)
- 3. Compute the entropy of each subset
- 4. Compute the Information gain

$$Gain(S, A) = \underbrace{E(S)}_{v \in Values(A)} \frac{|S_v|}{|S|} \cdot E(S_v)$$

	NO	YES	total
	1490	720	2210
Class probability pi	0,674	0,326	
pi * log (pi, 2)	-0,38	-0,53	
entropy	0,911		

- 1. Compute the entropy of the entire set
- 2. The attribute "sex" splits the dataset into two subsets :
 - female with 470 instances (344 survived)
 - male with 1731 instances (1364 died)
- 3. Compute the entropy of each subset
- 4. Compute the Information gain

$$Gain(S, A) = E(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} \cdot E(S_v)$$

female	NO	YES	total
	136	334	470
Class probability pi	0,289	0,711	
pi * log (pi <i>,</i> 2)	-0,52	-0,35	
entropy	0,868		

male	NO	YES	total
	1364	367	1731
Class probability pi	0,788	0,212	
pi * log (pi, 2)	-0,27	-0,47	
entropy	0,745		

- 1. Compute the entropy of the entire set
- 2. The attribute "sex" splits the dataset into two subsets :
 - female with 470 instances (344 survived)
 - male with 1731 instances (1364 died)
- 3. Compute the entropy of each subset
- 4. Compute the Information gain

$$Gain(S, A) = E(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} \cdot E(S_v)$$

$$Gain (S, Sex) = 0.911 - \left(\frac{470}{2201} * 0.868 + \frac{1731}{2201} * 0.745\right) = 0.166$$

female	NO	YES	total
	136	334	470
Class probability pi	0,289	0,711	
pi * log (pi, 2)	-0,52	-0,35	
entropy	0,868		

male	NO	YES	total
	1364	367	1731
Class probability pi	0,788	0,212	
pi * log (pi, 2)	-0,27	-0,47	
entropy	0,745		

TDIDT – Top Down Induction of Decision Trees

- We induce decision trees top-down
- There is many possible decision trees for a given dataset
- It is very important which attribute we choose as the root
- Heuristic: we choose the attribute which **best separates** the classes

Decision tree induction with the ID3 algorithm

Induce a decision tree on set S:

- 1. Compute the **entropy** E(S) of the set S
- 2. **IF** E(S) = 0
- 3. The current set is "clean" and therefore a leaf in our tree
- 4. **IF** E(S) > 0
- 5. Compute the **information gain** of each attribute Gain(S, A)
- 6. The attribute A with the highest information gain becomes the root
- 7. Divide the set S into subsets S_i according to the values of A
- 8. Repeat steps 1-7 on each S_i

Entropy and information gain

probability of class 1	probability of class 2	entropy E(p ₁ , p ₂) =	1.00
p ₁	p ₂ = 1-p ₁	-p ₁ *log ₂ (p ₁) - p ₂ *log ₂ (p ₂)	0.90
0	1	0.00	0.80
0.05	0.95	0.29	
0.10	0.90	0.47	A 0.60 0.50 0.40
0.15	0.85	0.61	
0.20	0.80	0.72	
0.25	0.75	0.81	0.20
0.30	0.70	0.88	0.10
0.35	0.65	0.93	0.00
0.40	0.60	0.97	0 0.2 0.4 0.6 0.8 1
0.45	0.55	0.99	distribution of probabilities
0.50	0.50	1.00	
0.55	0.45	0.99	
0.60	0.40	0.97	number of examples in the subset
0.65	0.35	0.93	probability of the "branch"
0.70	0.30	0.88 a	attribut A
0.75	0.25	0.81	
0.80	0.20	0.72 <i>Gai</i>	$in(S, A) = E(S) - \sum_{\nu \in S_{\nu}} \left(\frac{TS_{\nu}}{TS_{\nu}} \right) E(S_{\nu})$
0.85	0.15	0.61	$v \in Values$ (A) S
0.90	0.10	0.47	
0.95	0.05	0.29	`set S
1	0	0.00	number of examples in set S

Literature

- Max Bramer: Principles of data mining (2007)
 - 1. Introduction to Data Mining
 - 2. Data for Data Mining
 - 3. Using Decision trees for Classification
 - 4. Decition Tree Induction: Using Entropy for Attribute Selection
 - 9. More About Entropy
 - Appendix A: Essential Mathematics

Lab exercise 2

Decision trees in Orange

Exercise 1: Induce a decision tree

📫 Tree	?	\times
Name		
Parameters Induce binary tree Min. number of instances in leav Do not split subsets smaller than Limit the maximal tree depth to:	ייי	21 20 🗢 100 🗢
Classification Stop when majority reaches [%]:	95 🗣
Apply Automa P	atically	

- Dataset: "titanic"
- Play with tree parameters
- Repeat with the "adult" dataset

Exercise 2: Evaluate the decision tree

- Dataset: "zoo"
- Compare tree classifiers with different parameter values